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SOLUTION TO MIDTERM EXAMINATION

Directions: Do all three problems, which have unequal weight. This is a closed-book closed-note
exam except for one 81

2 × 11 inch sheet containing any information you wish on both sides. Calcu-
lators are not needed, but you may use one if you wish. Use a bluebook. Do not use scratch paper
– otherwise you risk losing part credit. Cross out rather than erase any work that you wish the
grader to ignore. Justify what you do. Express your answer in terms of the quantities specified in
the problem. Box or circle your answer.

Problem 1. (35 points) A parallel-strip trans-
mission line consists of two perfectly conducting
long flat thin metal strips of width D and vac-
uum separation d� D extending a long distance
in the ẑ direction. Take x̂ to be normal to the
strips, and define x = y = 0 at the midpoint of
the gap. Consider the propagation in the gap of
electromagnetic waves of angular frequency ω in
the TEM mode (Ez = Bz = 0). Take

E(r, t) = Re
(
Ẽ(x, y)ei(κz−ωt)

)
B(r, t) = Re

(
B̃(x, y)ei(κz−ωt)

)
,

where κ ≡ ω/c. Then, in vacuum, the relevant
Maxwell equations reduce to

0 =
∂Ẽx

∂x
+
∂Ẽy

∂y

0 =
∂Ẽy

∂x
− ∂Ẽx

∂y

cB̃y = Ẽx

−cB̃x = Ẽy .

(a) (10 points) Show that Ẽ can be written as

Ẽ(x,y) = −∇tΦ̃(x, y) ,

where
∇2

t Φ̃ = 0

and
∇t ≡ x̂

∂

∂x
+ ŷ

∂

∂y
.

If you don’t manage to show this, you never-
theless should assume this result in the later
parts.

Solution:

∇× Ẽ =
∂Ẽy

∂x
− ∂Ẽx

∂y
= 0

⇒ Ẽ = −∇Φ̃ = −∇tΦ̃

0 =
∂Ẽx

∂x
+
∂Ẽy

∂y

= ∇t · Ẽ
= ∇t · (−∇tΦ̃)

= −∇2
t Φ̃ .

(b) (10 points) Assume that

Φ̃ = +Φ0/2

on the top plate, and

Φ̃ = −Φ0/2

on the bottom plate, where Φ0 is a real constant.
Neglecting the small region near the edges, cal-
culate the real physical fields E(r, t) and B(r, t)
in the gap between the plates, in terms of Φ0.
Solution:
The solution Φ̃ to Laplace’s equation is unique,
given the boundary conditions:

Φ̃ = Φ0
x

d
.

Therefore

Ẽ = −x̂Φ0

d

E = −x̂Φ0

d
cos (κz − ωt)

cB = −ŷΦ0

d
cos (κz − ωt) .



(c) (15 points) Find the characteristic impedance
Z of this transmission line. Evaluate Z in ohms
for the case D = 100d.
[Hint: One way to do this is to take Z to be the
ratio of Φ0 to the maximum current flowing on
the inner surface of either plate. Assume that
this current is distributed uniformly in y. An-
other way is to take Z to be

√
L/C, where L

and C are the inductance and capacitance per
unit length of the transmission line, and

√
1/LC

is the phase velocity of the wave.]
Solution:
Method 1:
There are no time-varying fields within the per-
fect conductors. Therefore, across the inner
boundary of either conductor, from Ampère’s
law, ignoring directions and signs,

∆B = µ0K

Bmax = µ0Kmax ,

where Kmax is the maximum surface current
density (amperes/m). The impedance is

Z =
Φ0

KmaxD

=
µ0Φ0

BmaxD

=
cµ0Φ0

EmaxD

=
cµ0Φ0d

Φ0D

=
√
µ0

ε0

d

D

= 3.77 Ω .

Method 2:

vph =
1√
ε0µ0

=
1√
LC

L =
ε0µ0

C

C =
ε0D

d

Z =

√
L

C
=

√
ε0µ0

C2

=

√
ε0µ0d2

ε20D
2

=
√
µ0

ε0

d

D

= 3.77 Ω .

Problem 2. (40 points) “Surface” muon beams
are important tools for investigating the prop-
erties of condensed matter samples as well as
fundamental particles. Protons from a cyclotron
produce π+ mesons (quark-antiquark pairs) that
come to rest near the surface of a solid tar-
get. The pion then decays isotropically to an
(anti)muon (µ+) and a neutrino (ν) via

π+ → µ+ + ν .

Some of the muons can be captured by a beam
channel and transported in vacuum to an exper-
iment. In the limit that the mother pion decays
at the surface of the target (so that the daughter
muon traverses negligible material), the beam
muons have uniform speed (and, as it turns out,
100% polarization as well). For the purposes of
this problem, consider a muon to have 3/4 of the
rest mass of a pion; neglect the neutrino mass.
(a) (15 points) Show that the surface muons
travel at a speed which is a fraction β0 = 0.28 of
the speed of light.
Solution:
Let µ, π, and ν be the four-momenta of the
muon, pion, and neutrino, respectively, with
units such that c = 1. Enforcing energy-



momentum conservation,

π = µ+ ν

ν = π − µ

ν · ν = (π − µ) · (π − µ)
0 = π · π + µ · µ− 2π · µ
0 = m2

π +m2
µ − 2mπEµ

Eµ =
m2

π +m2
µ

2mπ
.

Similarly, permuting the same equation, and us-
ing Eν = pν = pµ,

µ = π − ν

µ · µ = (π − ν) · (π − ν)

m2
µ = π · π + ν · ν − 2π · ν
= m2

π + 0− 2mπEν

= m2
π − 2mπpµ

pµ =
m2

π −m2
µ

2mπ
.

Taking the ratio of these two results

β0 =
pµ

Eµ

=
m2

π −m2
µ

m2
π +m2

µ

=
16
9 − 1
16
9 + 1

=
7
25
= 0.28 .

(b) (15 points) A good method for capturing and
transporting surface muons is to place the muon
production target on the axis of a solenoidal
magnet with uniform field B; this axis defines
the beam direction. Muons (of charge e and
rest mass m) that are emitted close to the axial
direction are captured and transported by the
solenoid. In terms of β0 and other constants,
over what path length L does a surface muon
travel before it returns to the solenoid axis?
Solution:
The motion is helical with angular frequency
equal to the (relativistic) cyclotron frequency.

Working in the lab,

Ωcyclotron =
eB

γm

=
eB

√
1− β2

0

m

T =
2π

Ωcyclotron

=
2πm

eB
√
1− β2

0

L = β0cT

=
2πmβ0c

eB
√
1− β2

0

.

(c) (10 points) If a muon’s mean proper lifetime
is τ , what fraction of the muons will decay be-
fore they return to the solenoid axis? (If you are
concerned that you didn’t get part (a) or (b)
quite right, you may leave your answer in terms
of β0 and L.)
Solution:
In the lab, the time interval before the muon re-
turns to the solenoid axis is T = L/(β0c) (above).
In the proper (rest) frame of the muon, the same
interval is T ′ = T/γ0. If the mean life is τ , the
survival probability at time T ′ is exp (−T ′/τ).
Therefore the fraction F of muons that fail to
survive before returning to the solenoid axis is

F = 1− exp (−T ′/τ)

= 1− exp (−T/(γ0τ)
)

= 1− exp
(
− L

cτ

√
1− β2

0

β0

)
.

The above is an acceptable solution. Expressed
in terms of the answer to (b), it is

F = 1− exp
(
−2πm
eBτ

)
,

independent of β0.

Problem 3. (25 points) Consider the interac-
tion of an electron of charge −e and mass m
with an (externally produced) electromagnetic
field described by the four-potential Aµ. The
interaction Lagrangian Lint in this case is

Lint = − e

γm
pµA

µ ,



where pµ is the particle’s four-momentum. Con-
sider the canonical momentum

Pµ ≡ pµ − eAµ .

If one applies the Euler-Lagrange equations to
Lint, one discovers that if all four components of
Aµ are independent of any spatial coordinate xi,
then P i, the ith component of Pµ, is conserved.

While these facts may seem like theoretical
niceties, they can be of practical use. Con-
sider a capacitor whose parallel plates lie in the
xy plane. The inside of the bottom plate is at
z = 0 and the inside of the top plate is at z = d.
The bottom plate is grounded, and a positive
voltage V0 is applied to the top plate. The whole
setup is bathed in a uniform magnetic field

B = ŷB0 ,

which can be derived from a vector potential

A = x̂B0z .

An electron is emitted from the bottom plate in
the z direction with negligible velocity. It is ac-
celerated in the z direction toward the top plate
by the electric field in the gap; however, as the
electron gains velocity, the Lorentz force from
the magnetic field bends it toward the x direc-
tion. The resulting motion is complicated.
(a) (15 points) Show that the x component of
the electron’s momentum varies only as a func-
tion of its altitude z, and find the dependence.
Solution:
The components of Aµ are

A0 =
V

c
=
V0z

cd
A = x̂B0z .

Each component of Aµ is independent of both x
and y. Therefore, both the x and y components
of Pµ are conserved. Since A has no y com-
ponent, conservation of the y component of Pµ

merely confirms that the electron moves in the
xz plane, which we could have deduced from the
Lorentz force law. In the x direction,

px − eAx =
(
px(z = 0)− eAx(z = 0)

)
= 0− 0

px = eAx

= eB0z .

(b) (10 points) For simplicity assuming that the
electron is nonrelativistic, and taking B0 to be
fixed, find the minimum value of the applied
voltage V0 such that the electron makes it all the
way up to the top plate.

[The above describes an oversimplified version of
the static magnetron tube, which generated the
radar signals that won the Battle of Britain.]

Solution:
If the electron barely grazes the top plate, it will
be travelling parallel to it, or entirely in the x
direction. Since the magnetic field does no work,
the electron’s kinetic energy at that point will be
equal to its loss of potential energy eV0. Using
the result from part (a),

eV0 =
p2

x

2m

V0 =
e2B2

0d
2

2me

=
eB2

0d
2

2m
.


